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Abstract

As robots start to work alongside people, they are expected to coordinate
fluently with humans in teams. Many researchers have explored the problems
involved in building more interactive and cooperative robots. In this chapter, we
discuss recent work and the main application areas in human-robot teaming. We
also shed light on some practical challenges to achieving fluent human-robot
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coordination and conclude the chapter with future directions for approaching
these problems.
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Human-robot interaction · Human-robot teaming · Joint action · Dynamical
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1 Introduction

As robots are becoming more ubiquitous, they will be expected to interact with
people in a range of settings, from dyads to groups. To be effective and func-
tional teammates, robots need the ability to perceive and understand the activities
performed by other group members. For example, if a robot can interpret various
actions performed by people around it during a social event, then it can make
efficient decisions about its own actions. However, it is difficult to automatically
perceive and understand all the different tasks people engage in to make effective
decisions as a teammate.

If a robot could make better sense of how humans interact among themselves in
a group, its interactions with humans would reach a higher level of coordination,
resulting in a fluent meshing of actions [13, 15, 25, 27, 29, 55, 62]. When two
or more agents work together, Hoffman and Breazeal [15] defined fluency as the
quality of achieving a high level of mutual coordination and adaptation. This quality
is particularly important when the agents are well accustomed to the task and to each
other.

This chapter discusses the existing methods and applications of human-robot
interaction (HRI) in cooperative tasks. In many of these situations, robots are
expected to work with people to achieve a common goal through the process of
human-robot joint action. Thus, we start this chapter by giving a brief introduction
to joint action, both in the context of human-human and human-robot joint action.
We then summarize recent applications of human-robot cooperative interaction from
the literature. Finally, we conclude the chapter by briefly presenting the challenges
to realizing effective human-robot coordination with respect to hardware, software,
and usability.

2 Background

2.1 Approaches from Cognitive Science to Model Joint Action

When a person acts alone, their behavior is very different than when they coordinate
in a group [32]. When two or more persons coordinate in a group, it is important
to understand the different ways they can interact among themselves and generate
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suitable interactive behaviors [30]. Many researchers from the fields of psychology
and cognitive science investigate the underlying mechanisms of a joint action task.
This includes how people interact together, how they understand the intention of
other individuals, and how they coordinate together to perform a joint action.
Curioni et al., chapter “� Joint Action in Humans: A Model for Human-Robot
Interactions?” presented a detailed review of joint action in human teams.

Sebanz defined joint action as a form of social interaction where two or more
participants coordinate their actions in space and time while making changes to their
environment [33, 66]. Sebanz et al. described three important parts in a successful
performance of a joint action task [65]. The first part makes a prediction about the
intention of other interactional partners. The second involves understanding when
to perform the actions jointly, as this is very important for temporal coordination.
The last part involves understanding where and how to perform the joint action. The
authors described these as the “what,” “when,” and “where” components of joint
action.

Vesper et al. [76] suggested an architecture for joint action which focuses
on planning, action monitoring, and action prediction processes and ways of
simplifying coordination. This architecture described minimal requirements for an
individual agent to engage in a joint action. This architecture aims to fill the gap
between the approaches that focus on language and propositional attitudes and
dynamical system approaches.

Many researchers have explored the underlying mechanisms that people may
employ to perform a successful joint action task [44]. To perform joint actions
successfully in a group, each individual needs to integrate self-behavior with a
prediction about others’ behavior simultaneously [48]. For example, Novembre et al.
[48] investigated whether this integration process of self and other related behavior
is underpinned by a neural process associated with motor simulation. They explored
this through a music performance experiment. Their results suggested that motor
simulation underpins temporal coordination during joint actions.

Other researchers took a group perspective approach to model a successful joint
action. For example, Valdesolo et al. [74] investigated whether a coordinated action
in a group has any influence on the ability of the group members to pursue a joint
goal together. Their results suggested that a person’s ability to rocking in synchrony
enhanced that person’s perceptual sensitivity to the motion of other group members.
The ability to be synchronous with others resulted in an increase of their success in
a joint action task.

Slowiński et al. [70] explored whether coordination between two people perform-
ing a joint action task is higher when they exhibit similar motion features. To explore
this, they proposed an index of motion variability, called individual motor signature
(IMS), to capture the subtle differences of human movements. They investigated
the validity of this index via a mirror game. Their results suggested that when two
people shared a similar IMS value, the synchronization level was higher.

http://link.springer.com/Joint Action in Humans: A Model for Human-Robot Interactions?
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2.2 Dynamical Modeling of Groups

In this subsection, we discuss the contrasting perspective, which is more bottom up
and nonlinear, and explore coordination dynamics as a mechanism for realizing joint
action. In group interactions, the activities of each member continually influence the
activities of other group members. Most groups create a state of interdependence,
where each member’s outcomes and actions are determined in part by other
members of the group [9]. This process of influence can result in coordinated group
activity over time.

Many disciplines have approached the problem of how to assess coordination in
a system. These include robotics, physics, neuroscience, psychology, dance, and
music. Many of these techniques take a bottom-up approach, which first try to
measure the low-level signals and then build a high-level behavior from the low-
level signals [22, 23, 29, 41]. These low-level signals can include physical motion
features, physiological features (e.g., heart rate), eye gaze behavior, or activity
features. High-level behaviors, such as coordination within a group, are then inferred
from these low-level signals.

For example, Richardson et al. [57] proposed a method to assess group synchrony
by analyzing the phase synchronization of rocking chair movements. A group of six
participants rocked in their chairs with their eyes either open or closed, and they used
a cluster-phase method to quantify phase synchronization. Their results suggested
that their group-level synchrony measure could successfully distinguish between
synchronous and asynchronous conditions. Similarly, Néda et al. [43] investigated
the development of synchronized clapping in a naturalistic environment. They
quantitatively described the phenomena of how asynchronous group applause starts
suddenly and transforms into synchronized clapping.

Coordination among explicit and implicit behaviors has also been explored in
human-human interaction. Varni et al. [75] presented a system for real-time analysis
of nonverbal, affective social interaction in a small group. In their study, several
pairs of violin players performed while conveying four different emotions. The
authors then used recurrence quantification analysis to measure the synchronization
of the performers’ affective behavior. In follow-on work, the researchers developed
a system capable of analyzing the interaction patterns in a group of dancers.

Konvalinka et al. [35] explored coordination among implicit physiological sig-
nals and performed a study to measure the synchronous arousal between performers
and observers during a Spanish fire-walking ritual. This synchronous arousal was
derived from heart rate dynamics of the active participants and the audience.

Taking a nonlinear, dynamical systems approach, Iqbal and Riek developed a
method to measure the degree of synchronous joint action in a group [20, 22,
24, 27, 29]. Their method takes multiple types of task level events into account
while measuring the synchronization. This method can work on multiple types of
heterogeneous events and can measure asynchronous situation in a group, in contrast
to most other methods from the literature which only take a single type of event
into account. The authors validated their method by applying it to both human-
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human and human-robot teaming scenarios. Their results suggested that the method
can successfully measure the degree of coordination in a group which matches the
collective perception of group members. Extending this work, the authors designed
a new approach to enable robots to perceive human group behavior in real time,
anticipate future actions, and synthesize their own motion accordingly (see Fig. 1)
[24, 29].

Lorenz et al. [38] also investigated movement coordination in human-human and
human-robot teams. Their study involved both a human-human and human-robot
dyad tapping on two positions on a table at certain times. The authors explored
whether goal-directed, but unintentional, coordination of movements occurred
during these interactions. Their results suggest that humans synchronized their
movements with the movements of the robots.

3 Recent Applications

As robots are increasingly working with people, they need to perform joint
actions with people efficiently. To achieve this, many of the aforementioned
approaches have been employed in human-robot teams. This section will outline
four main application areas where robots cooperatively perform joint action tasks
with humans. We summarize the approaches used in these areas in Table 1.

3.1 Proximate Human-Robot Teaming

In many interactions, robots and humans need to share a common physical space
to interact. Various methods are employed on robots to work efficiently in close
proximities by avoiding collisions, such as models from a human demonstration,
anticipatory action planning, etc. [72].

To build policies for robots to share a space with humans, many approaches in the
literature first built models from human demonstrations. After training, robots then
use these trained models to collaborate with people. For example, Ben Amor et al.
[2] collected human motion trajectories as dynamic movement primitives (DMP)
from a human-human task. After that, the authors used dynamic time warping
to estimate the robot’s DMP parameters. Using these parameters, they modeled
human-robot joint physical activities using a new representation, called interaction
primitives (IP). Their experimental results suggested that a robot successfully
completed a joint physical task with a person when IPs were used.

Nikolaidis et al. [47] proposed a two-phase framework to fit a robot’s col-
laborative policy to fit with a human collaborator. They first grouped the human
activities into clusters and then learned a reward function for each cluster using an
inverse reinforcement learning. This learned model was incorporated with a mixed
observability Markov decision process (MOMDP) policy with the human type as
the partially observable variable. After that, they used this model for a robot to infer
the human type and to generate the appropriate policies.
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Fig. 1 People and robots are engaged in cooperative tasks (From [29, 38])

Many researchers try to achieve successful human-robot collaboration in a shared
space by modeling human activities and use that knowledge as an input to a
robot’s anticipatory action planning mechanism [72]. This approach enables robots
to generate movement strategies to efficiently collaborate with people.

For instance, Hoffman and Weinberg [17, 18] developed an autonomous robotic
jazz-improvising robot, Simon, which played the marimba (see Fig. 2). To play
in real time with a person, the robot needed an anticipatory action plan. The
authors divided the actions into preparation and follow-through steps. Based on the
anticipatory plans, their robot could simultaneously perform and react to shared
activities with people.

Koppula et al. [36] also developed a method to anticipate a person’s future
actions. Anticipated actions were then used to plan appropriate actions for a robot
to perform collaborative tasks in a shared environment. In their method, they
model humans through low-level kinematics and high-level intent, as well as using
contextual information. Then, they modeled the human’s and robot’s behavior
through a Markov decision process (MDP). Their results suggested that this
approach performed better than various baseline methods for collaborative planning.

Mainprice and Berenson [39] presented a framework to allow a human and
a robot to perform a manipulation task together in close proximity. This frame-
work used early prediction of the human motion to generate a prediction of
human workspace occupancy. Then, they used a motion planner to generate robot
trajectories by minimizing a penetration cost in the human workspace occupancy.
They validated their framework via simulation of a human-robot collaboration
scenario.

Along these lines, Pérez-D’Arpino et al. [52] proposed a data-driven approach
which used human motions to predict a target during a reaching-motion task.
Unhelkar et al. [73] extended this concept for a human-robot co-navigation task.
This model used “human turn signals” during walking as anticipatory indicators of
human motion. These indicators were then used to plan motion trajectories for a
robot.
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3.2 Human-Robot Handovers

A particular kind of activity often conducted in the proximate human-robot inter-
action space is a handover. It is an active application space in robotics research
[72]. Most of the work on handovers focuses on designing algorithms for robots
to successfully hand objects to people, as well as receive objects from them. The
researchers working in this area use many methods to achieve their goals, including
nonverbal signal analysis, human-human handover models, and legible trajectory
analysis.

Many researchers used nonverbal signals of people to facilitate fluent object
handover during human-robot interaction [72]. These signals included eye gaze,
body pose, head orientation, etc. For example, Shi et al. [69] focused on building
a model for a robot to handover leaflets in a public space, looking specifically at
the relationship between gaze, arm extension, and approach. They used a pedestrian
detector in their implementation on a small humanoid robot. Their results showed
that pedestrians accepted more leaflets from the robot when their approach was
employed than another state-of-the-art approach.

Similarly, Grigore et al. [10] demonstrated that the integration of an under-
standing of joint action into human-robot interaction can significantly improve the
success rate of robot-to-human handover tasks. The authors introduced a higher-
level cognitive layer which models human behavior in a handover situation. They
particularly focused on the inclusion of eye gaze and head orientation into the
robot’s decision making.

Other researchers also investigated human-human handover scenarios to get
inspiration to build models for human-robot handover scenarios [72]. Along this
line of research, Huang et al. [19] analyzed data from human dyads performing
a common household handover task – unloading a dish rack. They identified two
coordination strategies that enabled givers to adapt to receivers’ task demands,
namely, proactive and reactive methods, and implemented these strategies on a robot
to perform the same task in a human-robot team. Their results suggested that neither
proactive nor reactive strategy can achieve both better team performance and better
user experience. To address this challenge, they developed an adaptive method to
achieve a better user experience with an improved team performance compared to
the other methods.

To improve the fluency of a robot’s actions during a handover task, Cakmak
et al. [5] found that the failure to convey an intention of a robot to handover an
object causes delay during the handover process. To address this challenge and to
achieve fluency, the authors tested two separate approaches on a robot: performing
distinct handover poses and performing unambiguous transitions between poses
during the handover task. They performed an experiment where a robot used these
two approaches while handing over an object to a person. Their findings suggested
that unambiguous transition between poses reduced human waiting times, resulting
in a smoother object handover. However, distinct handover poses did not have any
effect on that.
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Fig. 2 A live performance of a robotic marimba player (From [17])

Other researchers work on perform trajectory analysis to achieve smooth han-
dover of objects. For example, Strabala et al. [71] proposed a coordination structure
for human-robot handovers based on human-human handover. The authors first
studied how people perform handovers with their partners. From this study, the
authors structured how people approach, move their hands, and transfer objects.
Taking inspiration from this structure, the authors then developed a similar han-
dover structure for human-robot handover. This human-robot handover structure
concerned about what, when, and where aspects of handovers. They experimentally
validated this design structure.

3.3 Fluent Human-Robot Teaming

Many researchers in the robotics community try to build fluent human-robot teams.
To achieve this goal, many approaches have been taken, including insights from
human-human teams, cognitive modeling for robots, understanding the coordination
dynamics of teams, and adaptive future prediction methods [72].

To achieve fluency in human-robot teams, many researchers investigated how
people achieve fluent interaction in human-only teams. This knowledge is used
to develop strategies for robots to achieve fluent interaction while interacting with
people.

Taking insights from human-human teaming, Shah et al. [67, 68] developed a
robot plan execution system, called Chaski, to use in human-robot teams. This
system enables a robot to collaboratively execute a shared plan with a person. This
system can schedule a robot’s action and adapt to the human teammate to minimize
the human’s idle time. Through a human-robot teaming experiment, the authors
validated that Chaski can reduce a person’s idle time by 85%.
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To build cognitive models for robots, researchers build on many other fields,
including cognitive science, neuroscience, and psychology. For example, Hoffman
and Breazeal [12] address the issue of planning and execution through a framework
for collaborative activity in human-robot groups by building on the various notions
from cognitive science and psychology literature. They presented a hierarchical
goal-oriented task execution system. This system integrated human verbal and
nonverbal actions, as well as robot nonverbal actions to support the shared activity
requirements.

Iqbal, Rack, and Riek developed two anticipation algorithms for robots to
coordinate their movements with people in teams by taking team coordination
dynamics into account [29, 55]. One of the anticipation algorithms (SIA) relied
on high-level group behavior understanding, whereas the other method (ECA) did
not rely on high-level group behavior. The results indicated that the robot was more
synchronous to the team and exhibited more contingent and fluent motion when
the SIA method was used than the ECA method. These findings suggested that the
robot performed better when it had an understanding of high-level group behavior
than when it did not.

Additionally, Iqbal and Riek [24] investigated how the presence of robots affects
group coordination when both their behavior and their number (single robot or
multi-robot) vary. Their results indicate that group coordination is significantly
affected when a robot joins a human-only group. The group coordination is further
affected when a second robot joins the group and has a different behavior from the
other robot. These results indicated that heterogeneous behavior of robots in a multi-
human multi-robot group can play a major role in how group coordination dynamics
stabilize.

Drawing inspiration from the neuroscience and cognitive science literature, Iqbal
et al. [28] developed algorithms for robots which leveraged a humanlike under-
standing of temporal changes during the coordination process, with a particular eye
toward an understanding of rhythmic tempo change. In their work, a robot employed
two separate processes while coordinating with people, a temporal adaptation
process, and a temporal anticipation process. A robot used the temporal adaptation
process to compensate for temporal errors that occurred while coordinating with
people. Additionally, the robot used the anticipation process to generate a prediction
about the timing of the next action to coincide with the timing of the next external
rhythmic signal. They applied these processes to a robot to drum synchronously
with a group of people.

Building adaptive models based on a prediction of future actions is another
approach to achieve fluent human-robot collaboration. Hoffman and Breazeal [15]
developed a cognitive architecture for robots, taking inspiration from neuropsycho-
logical principles of anticipation and perceptual simulation. In this architecture, the
fluency in joint action achieved through two processes: (1) anticipation based on a
model of repetitive past events and (2) the modeling of the resulting anticipatory
expectation as perceptual simulation. They implemented this architecture on a non-
anthropomorphic robotic lamp, which performed a human-robot collaborative task.
Their results suggested that the sense of team fluency and the robot’s contribution
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Fig. 3 A human-robot drumming team (From Iqbal et al. [28])

to the fluency significantly increased when the robotic lamp used their developed
architecture.

In other work, Hoffman and Breazeal [14] proposed an adaptive action selection
mechanism for a robot in the context of human-robot joint action. This model made
anticipatory decisions based on the confidence of their validity and relative risk.
They validated their model through a study involving human subjects working with
a simulated robot. They used two versions of robotic behaviors during this study,
one was fully reactive and another one used their proposed anticipation model.
Their results suggested a significant improvement in best-case task efficiency and
significant difference in the perceived commitment of the robot to the team and its
contribution to the team’s fluency and success.

3.4 Robot as a Partner

There are still many open areas regarding social interactional capabilities that a
robot should have before it can fluently and naturally interact with people as a
partner. Many researchers have tried to tackle these open questions by building
models for robots to understand and to act appropriately as a partner in social
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situations (chapter “� Empathy as Signaling Feedback Between (Humanoid) Robots
and Humans”).

For example, Leite et al. [37] conducted an ethnographic study to investigate
how a robot’s capability of recognizing and responding empathically can influence
an interaction. The authors performed the study in an elementary school where
children interacted with a social robot. That robot had the capability of recognizing
and responding empathically to some of the children’s affective states. The results
suggested that the robot’s empathic behavior had a positive effect on how children
perceived the robot (Fig. 3).

Many researchers also explored how a robot’s explicit behavior can influence
its interaction with people (chapters “� Enriching the Human-Robot Interaction
Loop with Natural, Semantic, and Symbolic Gestures” and “� Movement-Based
Communication for Humanoid-Human Interaction”). For example, Riek et al. [59,
61] investigated how imitation by a robot affects human-robot teaming. They
designed a study where a robot performed three head gestures while interacting with
a person: full head gesture mimicking, partial mimicking, and no mimicking. The
authors found that in many cases, people nodded back in response to the robot’s
nodding during interactions. They suggested incorporating more gestures, along
with head nods, while studying affective human-robot teaming.

In another study, Riek et al. [60] explored the effect of cooperative gestures
performed by a humanoid robot in a teaming scenario. The authors performed an
experiment where they manipulated the gesture type, the gesture style, and the
gesture orientation performed by the robot while interacting with people. Their
results suggested that people cooperate more quickly when the robot performed
abrupt (“robotlike”) gestures and when the robot performed front-oriented gestures.
Moreover, the speed of people’s ability to decode robot gestures is strongly
correlated with their ability to decode human gestures.

In HRI, eye gaze can provide important nonverbal information [72]. For example,
Moon et al. [40] performed an experiment where a robot performed humanlike gaze
behavior during a handover task. In their experiment, a PR2 robot performed three
different gaze behaviors while handing over a water bottle to a person. The results
indicated that the timing of handover and the perceived quality of the handover event
were improved when the robot showed a humanlike gaze behavior.

Admoni et al. [1] explored whether a deviation from a robot’s standard behavior
can influence the interaction. The authors claimed that people oftentimes overlooked
robot’s standard nonverbal signals (e.g., eye gaze) if they were not related to the
primary task. In their experiment, the authors manipulated the handover behavior of
a robot to deviate a little from the standard expected behavior. The results of this
experiment suggested that a simple manipulation on standard handover timing of a
robot made people be more aware of other nonverbal behaviors of the robot, such as
eye gaze behavior.

Another well-investigated approach in the field is to teach a robot appropriate
behaviors by teaching it through demonstration, i.e., learning from demonstration
(LfD) [3]. For instance, Niekum et al. [45] developed a method to discover
semantically grounded primitives during a demonstrated task. From these primi-

http://link.springer.com/Empathy as Signaling Feedback Between (Humanoid) Robots and Humans
http://link.springer.com/Enriching the Human-Robot Interaction Loop with Natural, Semantic, and Symbolic Gestures
http://link.springer.com/Movement-Based Communication for Humanoid-Human Interaction
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Table 1 Application areas of human-robot collaboration

Application areas Approaches

Proximate human-robot
teaming

Models from human demonstration ([2, 47]) Anticipatory action
planning ([17, 18, 36, 39, 52])

Human-robot handovers Nonverbal signal analysis ([10, 69]) Modeling based on
human-human handover ([5, 19]) Trajectory analysis ([71])

Fluent human-robot
teaming

Insights from human-human teams ([67, 68]) Cognitive modeling
([12, 24, 28, 29, 55]) Predicting actions ([14, 15])

Robot as a partner Explicit behavior analysis ([37, 59, 60, 61]) Eye gaze analysis
([1, 40]) Learning from demonstration ([4, 11, 45])

tives, the authors then built a finite-state representation of the task. The authors
used a beta-process autoregressive hidden Markov model to automatically segment
demonstrations into motion categories. These categories were then further divided
into motion grounded stated in a finite automaton. From many demonstrated
examples, this model was trained on a robot.

Hayes [11] looked at mutual feedback as an implicit learning mechanism during
an LfD scenario. The authors explored grounding sequences as a feedback channel
for mutual understanding. In their study, both a person and a robot provided non-
verbal feedback to communicate their mutual understanding. The results from the
experiments showed that people provided implicit positive and negative feedback to
the robot during the interaction, such as by smiling or by averting their gaze from
the robot. The results of this work can help us to build adaptable robot policies in
the future.

Brys et al. [4] explored how to merge reinforcement learning and LfD approaches
together to achieve a better and faster learning phase. One key limitation of
reinforcement learning is that it often requires a huge amount of training data to
achieve a desirable level of performance. For a LfD approach, there is no guarantee
about the quality of the demonstration, which can have many errors. Brys et al.
investigated the intersection between these two approaches and tried to speed up the
learning phase of RL methods using an approach called reward shaping.

4 Challenges

When a robot leaves controlled spaces and begins to work alongside people, many
things taken for granted in terms of perception and action do not apply, because
people act unpredictably, and little can be known about human environments in
advance [46, 49, 58]. These Challenges, human-robot teamingchallenges include
difficulties in human action detection, understanding of team dynamics, limitations
in robot hardware and software design, and egocentric perception. This section
introduces some of the challenges that researchers face while incorporating robots
into human environments to coordinate with people and briefly discusses some
solutions to these problems.
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4.1 Uncertainty in Human Action Detection

One of the main challenges to detecting human actions is the unpredictability of
human behavior. Sometimes it can be difficult for a robot to perceive and understand
the different types of events involved in these activities to make effective decisions
due to sensor occlusion, sensor fusion error, unanticipated motion, narrow field of
view, cluttered backgrounds, etc. [6, 7, 56, 62].

One approach to address the challenge of human action detection is to use
classification algorithms to detect actions from video data. However, this approach
has major challenges, including intra- vs interclass variations between action
classes, environment and recording settings, temporal variations of actions, and
obtaining and labeling training data [53]. Moreover, using a classifier for action
detection has several computational bottlenecks, including generalizability, abnor-
mality detection, and classifier training [56].

Most of the approaches available in the literature cannot handle most of these
challenges. Moreover, in most action recognition cases, researchers usually assume
that camera positions are static. However, this is not the case for mobile robots [6].

Ryoo and Matthies try to address the challenge of action detection from a first-
person point of view [63]. In their work, the authors try to detect seven classes of
commonly observed activities during human-human interaction from a first-person
point of view. Ryoo et al. [64] further extended this approach to detect early human
activities from a robot. Using their method, a robot can detect human activities early,
in real time, and in real-world environments. However, these methods still do not
address other practical challenges, such as occlusion.

4.2 Unpredictable Changes in Team Dynamics

If a robot has some ability to model team dynamics, it can anticipate future
actions in a team and adapt to those actions to be an effective teammate. However,
understanding team dynamics is not trivial. If robots have an understanding of its
environment, then its interactions within the team might facilitate a higher level of
coordination.

In many human-human team situations, team members are explicitly assigned
to various roles [50]. On the other hand, in many human-human teams, various
roles emerge over time across the team members to achieve a common goal
[34]. Oftentimes these assigned roles change dynamically based on necessities.
For example, a person who begins to lead a team to move a table may follow
another teammate’s lead later during the moving process. How people coordinate
and cooperate among themselves in these situations are important indicators for
robots to understand various roles in groups.

In human-robot interaction scenarios, various role distribution models are
used. High-level role distribution models in the HRI paradigm are master-slave,
supervisor-subordinate, partner-partner, teacher-learner, and leader-follower [21,



14 T. Iqbal and L.D. Riek

26, 50] (chapter “� Applications in HHI Physical Cooperation”). However, these
well-defined role distributions are rarely seen in real-world situations. Moreover,
distributed roles change dynamically in many situations. Therefore, if the roles are
not predefined for an interaction, the robot needs to make predictions about the role
of copresent people, to infer its own role in the group.

Understanding the role of other people in a group is not easy for a robot. Thus,
most of the human-robot teams are designed using some prior distribution of roles to
achieve goals. However, a dynamic understanding of role distributions in a human-
robot team can enable a robot to understand team dynamics more appropriately,
which can lead to a fluent interaction in the group.

4.3 Limited Behavioral Versatility on Robots

Another challenge of incorporating robots in human teams is a lack of versatility of
behaviors on robots. Most robots are designed to perform a specific task. Therefore,
most of the time, they are limited in their behavioral abilities because they are
restricted by their physical capabilities. For example, some robots are designed to
perform manipulation tasks, some are good at recognizing and tracking people, and
some are good at mobility.

However, a robot often needs to perform more than one of these abilities simulta-
neously to interact fluently and establish trust with people. For example, to socially
interact with people, a robot needs to be able to identify them, approach them
by avoiding obstacles, understand verbal and nonverbal messages, communicate
verbally and nonverbally, and work alongside them. Thus, researchers need robots
with versatile behaviors and abilities to build more efficient and functional human-
robot teams.

Anthropomorphic robots are widely used in social environments to interact with
people. These robots can engage with people in social interaction by perceiving
various social cues from verbal and nonverbal channels and by communicating
with people verbally and nonverbally. However, these types of robots are often not
designed with capabilities to perform other tasks, such as mobility and manipula-
tion. Kismet [31] was one of the first few anthropomorphic robots with an expressive
face that was used to interact with people in social environments using gaze, facial
expression, body posture, and vocal babbling. However, due to lack of other physical
parts, such as hands, this social robot lacks the capability to perform hand gestures
to interact with people fluently.

The Nao robot is a widely used humanoid robot for research [42], which can
walk, show expressive gestures, and verbally communicate with people. Because
of its expressive body gestures and verbal communication capabilities, it became a
popular platform which enabled researchers to design a wide variety of interactions
with people. However, it lacks facial expressions and is incapable of performing
manipulation tasks, which limits its utility.

There are also non-anthropomorphic robots that interact and collaborate with
people. These robots can show various verbal and nonverbal responses and can also

http://link.springer.com/Applications in HHI Physical Cooperation
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generate animated gestures while collaborating with people. For example, Hoffman
and Ju [16] designed a non-humanoid robot with expressive movements in mind.
This robot can perform humanlike gestures, such as a head nod to express agreement
and a head shake to express disagreement. This robot can express selective gestures;
however, it cannot express many other gestures which are possible to perform with
an expressive face.

On the other hand of the spectrum, there exist many robots that are strictly
designed to perform manipulation tasks, e.g., Fetch and Freight robot by Fetch
Robotics [8]. These arms are capable of performing dexterous manipulation tasks.
However, these robots are not particularly functional in social situations, as
oftentimes they are not safe around people, and cannot easily generate expressive
behaviors.

PR2 robot by Willow Garage [54] is another widely used robotic platform, par-
ticularly for manipulation and handover research. This robot has two manipulation
arms with grippers and can perform many dexterous tasks, which make it a widely
used robotic manipulator by the research community. However, this robot lacks the
capability to perform any expressive behavior toward people and not very suitable
for human social environments.

4.4 Lack of Infrastructure to Support Replicability

Because of the wide range of platforms used on various robots, it is very challenging
for researchers to replicate studies across different robots. This limitation prevents
human-robot collaboration researchers from exploring the effects of using various
kinds of robots in similar situations.

These difficulties include changes in sensor modalities across various platforms,
variation in onboard processing units, and variation in physical structure. For
example, if a robot has a high-definition RGB-D camera and has an onboard
graphical processing unit, then it can detect facial expressions more precisely. On
the other hand, if another robot only has a low-definition RGB camera with no
onboard processing unit, then the same algorithms will not perform consistently.

The robot operating system (ROS) is a commonly used platform in the academic
community [51]. However, as this is an open-source software, there are many
challenges using it due to lack of software support and maintenance.

Moreover, similar algorithms need to be implemented on different platforms as
not all robots are using a unified platform. This requires researchers to reimplement
preexisting algorithms to accommodate different platforms, which oftentimes delay
progress. Having common infrastructures will greatly help the research community
to achieve replicability and to explore new robotic behaviors to coordinate with
people.
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5 Discussion

In this chapter, we discussed some exciting recent work on human-robot coor-
dination. We briefly described recent approaches to model human-human and
human-robot joint action from the literature. These approaches include neural
process modeling, taking a group perspective, bottom-up approaches, nonlinear
dynamical systems approaches, and implicit and explicit physiological signals.

We also discussed four main application areas in human-robot cooperation
domain, namely, human-robot handovers, interaction in close physical proximities,
fluent human-robot teaming, and robot as a partner. Many approaches have been
taken to incorporate robots in these application domains, including dynamic trajec-
tory analysis, anticipatory action planning, cognitive modeling, explicit and implicit
behavior analysis, affective behavior analysis, and learning from demonstration
(LfD).

Although there exist many applications of human-robot coordination, there
also exist many practical issues that must be addressed to achieve a higher level
of fluency in interaction. These practical issues include a lack of work done to
detect and recognize copresent human actions and to understand team dynamics,
limitations in robot design, and a lack of infrastructure to support replicability.
Computational fields, like computer vision and machine learning, are trying to
address specific robotic problems related to real-world scenarios, such as using
egocentric vision, computationally inexpensive object proposal algorithms, and so
on [6, 7]. Along with improvements in these technologies and existing algorithms,
social robots will be able to cooperate with copresent people better in human social
environments in the future.
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